

Available online at www.sciencedirect.com



Tetrahedron Letters 45 (2004) 9273-9276

Tetrahedron Letters

## DNA containing phenanthroline- and phenanthrene-derived, non-nucleosidic base surrogates

Simon M. Langenegger and Robert Häner\*

Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

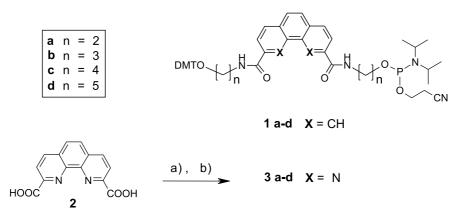
Received 24 August 2004; revised 11 October 2004; accepted 12 October 2004 Available online 28 October 2004

Abstract—Simple, non-nucleosidic phenanthroline- and phenanthrene derivatives have been synthesised and incorporated into oligodeoxynucleotides. Complementary strands containing the modified building blocks in opposite positions form stable hybrids. Thermal denaturation experiments show that the double strands containing the phenanthroline derivatives are more stable than the ones with the corresponding phenanthrenes. Furthermore, it was found that duplex stability is considerably decreased if the linkers of the modified building blocks are too short.

© 2004 Elsevier Ltd. All rights reserved.

Besides their importance as the genetic material, nucleic acids are increasingly gaining interest as nanometersized, functional matter.<sup>1–4</sup> Due to the repetitive, welldefined arrangement of their building blocks, nucleic acids and related types of oligomers<sup>5–8</sup> are ideal objects for the designed construction of larger assemblies. Thus, they have been used for the spatially well-defined arrangement of gold nanoparticles<sup>9,10</sup> or for the generation of larger molecular assemblies and architectures.<sup>11–14</sup> Furthermore, they may find applications as molecular metal wires<sup>15–19</sup> and even as molecular computers<sup>20,21</sup> or machines.<sup>22,23</sup> The combination of nucleotides with nonnatural building blocks enhances the number of possible constructs and their potential applications even further. Recently, we reported the synthesis and properties of a non-nucleosidic, phenanthrene-derived building block and its incorporation into double stranded DNA (Scheme 1, A).<sup>24,25</sup> This simple building block can serve as a base surrogate without destabilising the DNA duplex nor altering its overall B-DNA structure. Based on the data obtained, a model of interstrand-stacked phenanthrenes was proposed.<sup>24</sup> Since  $\pi$ -stacking interactions should be favoured by heteroaromatic derivatives,<sup>26</sup> we investigated the effect of the phenanthroline analogues (Scheme 1, **B**). Here, we report that the phenanthroline derivatives gives rise to more stable hybrids than the analogous phenanthrenes and that the length of the non-nucleosidic linker plays an important role.

The building blocks required for the synthesis of the modified oligonucleotides are shown in Scheme 2. The phenanthrene derivatives 1a-c were prepared as




Scheme 1. Non-nucleosidic phenanthrene- and phenanthroline-derived building blocks.

Keywords: Phenanthrene; Phenanthroline; DNA; Duplex; Stacking.

\* Corresponding author. Tel.: +41 31 631 4382; fax: +41 31 631 8057; e-mail: robert.haener@ioc.unibe.ch

0040-4039/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.10.068



Scheme 2. Synthesis of the required phosphoramidites. Reagents and conditions: (a)  $H_2N(CH_2)_nOH/H_2N(CH_2)_nODMT$  (1:1), Hünig's base, BOP; (b) 2-cyanoethyl diisopropylamidochloridophosphite, Hünig's base.

described previously.<sup>25,27</sup> In addition, **1d** was prepared according to the same procedures. Synthesis of the phenanthroline-derived compounds started from the known **2**.<sup>28</sup> Attachment of the different 4,4'-dimethoxytritylated linkers and subsequent phosphitylation yielded the phosphoramidite compounds **3a–d**.<sup>29</sup> Building blocks **2a–d** and **3a–d** were then used for the synthe-

sis of the oligonucleotides shown in Table 1. Assembly of the oligomers involved standard automated oligonucleotide synthesis.<sup>30,31</sup> The crude oligomers were purified by reverse phase HPLC and their identity was verified by mass spectrometry. The oligonucleotides are sets of complementary 21mers containing a modified building block in the central position of each strand. **Pn** or **Qn** 

Table 1. Influence of phenanthrene and phenanthroline nucleotide surrogates on the thermal stability of duplex DNA

| Entry                      | Duplex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $T_{\rm m}$ (°C) <sup>a,b</sup>                              | $\Delta T_{\rm m}  (^{\circ}{\rm C})^{\rm c}$ |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|--|
| 1                          | (5') AGC TCG GTC A T C GAG AGT GCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68.0                                                         | _                                             |  |
|                            | (3') TCG AGC CAG T A G CTC TCA CGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |                                               |  |
| 2                          | (5') AGC TCG GTC A <b>P2</b> C GAG AGT GCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61.3                                                         | -6.7                                          |  |
|                            | (3') TCG AGC CAG T <b>P2</b> G CTC TCA CGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                               |  |
| 3                          | (5') AGC TCG GTC A <b>P3</b> C GAG AGT GCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68.3                                                         | 0.3 <sup>d</sup>                              |  |
|                            | (3') TCG AGC CAG T <b>P3</b> G CTC TCA CGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                               |  |
| 4                          | (5') AGC TCG GTC A <b>P4</b> C GAG AGT GCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67.3                                                         | -0.7                                          |  |
|                            | (3') TCG AGC CAG T <b>P4</b> G CTC TCA CGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                               |  |
| 5                          | (5') AGC TCG GTC A <b>P5</b> C GAG AGT GCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68.7                                                         | 0.7                                           |  |
|                            | (3') TCG AGC CAG T <b>P5</b> G CTC TCA CGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                               |  |
| 6                          | (5') AGC TCG GTC A <b>Q2</b> C GAG AGT GCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65.6                                                         | -2.4                                          |  |
|                            | (3') TCG AGC CAG T <b>Q2</b> G CTC TCA CGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                               |  |
| 7                          | (5') AGC TCG GTC A Q3C GAG AGT GCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71.1                                                         | 3.1                                           |  |
|                            | (3') TCG AGC CAG T <b>Q3</b> G CTC TCA CGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                               |  |
| 8                          | (5') AGC TCG GTC A <b>Q4</b> C GAG AGT GCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70.6                                                         | 2.6                                           |  |
|                            | (3') TCG AGC CAG T <b>Q4</b> G CTC TCA CGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                               |  |
| 9                          | (5') AGC TCG GTC A <b>Q5</b> C GAG AGT GCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70.2                                                         | 2.2                                           |  |
|                            | (3') TCG AGC CAG T Q5G CTC TCA CGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |                                               |  |
| <b>Pn</b> (phenanthrene)   | $= - \circ \operatorname{res}_{n}^{H} - \operatorname{res}_{o}^{H} $ |                                                              |                                               |  |
| <b>Qn</b> (phenanthroline) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P2,Q2: n = 2<br>P3,Q3: n = 3<br>P4,Q4: n = 4<br>P5,Q5: n = 5 |                                               |  |

<sup>a</sup> Conditions: Oligomer concentration 1.0 µM, 10 mM Tris–HCl, 100 mM NaCl, pH7.4; temperature gradient: 0.5 °C/min.

<sup>b</sup> Melting temperatures were determined from the maximum of the first derivative of the melting curve (A<sub>260</sub> against temperature); each  $T_m$  is the average of three independent experiments; exptl. error: ±0.5 °C.

<sup>&</sup>lt;sup>c</sup> Difference in  $T_{\rm m}$  relative to the control duplex (entry 1).

<sup>&</sup>lt;sup>d</sup> Value taken from the literature.<sup>24</sup>

symbolise a phenanthrene or a phenanthroline, respectively, and n indicates the length of the alkyl linkers. For comparison, an unmodified reference duplex was synthesised possessing an AT-base pair in the central position.

The influence of the aromatic base surrogates on duplex stability was analysed by thermal denaturation experiments. The melting temperatures  $(T_{\rm m}$ 's, see Table 1) reveal that the phenanthrene-modified hybrids (entries 2-5) are consistently less stable than the corresponding hybrids containing phenanthroline and analogous linkers (entries 6–9). The difference in  $T_{\rm m}$ 's between the two series is in the range of 2-4°C, always in favour of the phenanthroline-modified duplexes. Such a difference is comparable to the contribution of an AT-base pair to duplex stability. Furthermore, in both series the optimal linker length is reached with n = 3, that is, with propyl-type linkers. Duplex stability is rather insensitive to a further increase in the linker length. No statistically significant change (exptl. error:  $\pm 0.5$  °C) is observed among the derivatives containing propyl, butyl or pentyl linkers in both series. In contrast, the stability is considerably diminished if the linker is too short. Thus, going from a propyl to an ethyl linker, the  $T_{\rm m}$  is reduced by 7.0 and 5.5 °C in the phenanthrene and the phenanthroline series, respectively (cf. entries 2/3 and 6/7).

All oligomers investigated in the study showed a single, cooperative transition. Figure 1 shows the melting curve of the duplex containing phenanthrolines with three methylene groups in the linkers (i.e., Q3, see also entry 7 in Table 1). In addition, the circular dichroism spectra (CD) of the hybrids investigated are all in agreement with a B-form duplex. The CD spectrum of the duplex containing the Q3 building blocks (see also Table 1, entry 7) is shown in Figure 2 as a representative example.

All the data obtained support a model of interstrandstacked, non-nucleosidic building blocks in an otherwise regular B-DNA duplex. An illustration of interstrandstacked phenanthrolines is shown in Figure 3. The flexible linkers connecting the polyaromatic hydrocarbons to the phosphate backbone of the nucleic acid do not

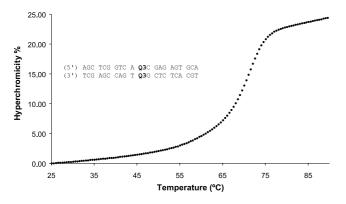



Figure 1. Representative thermal melting curve of a duplex containing two non-nucleosidic phenanthroline building blocks (Q3, see also Table 1, entry 7) in opposite positions.

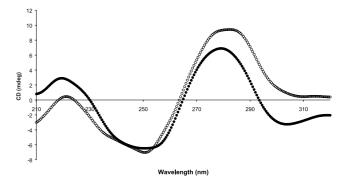



Figure 2. CD spectrum of the duplex containing two non-nucleosidic phenanthroline building blocks ( $\bullet$ , Q3, see also Table 1, entry 7) in comparison to the unmodified duplex ( $\bigcirc$ , Table 1, entry 1).

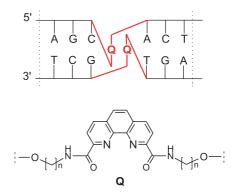



Figure 3. Illustration of a duplex containing interstrand-stacked phenanthrolines with flexible, non-nucleosidic linkers.

compromise the overall stability of the hybrid nor do they substantially alter the overall B-DNA geometry. The increase in  $T_{\rm m}$ , which is observed by going from phenanthrene to the corresponding phenanthroline building blocks is well in agreement with the expectation, since the higher dipole moment present in the heteroaromatic phenanthrolines should lead to stronger stacking interactions.<sup>26</sup>

In conclusion, non-nucleosidic phenanthrene and phenanthroline building blocks are well tolerated in duplex DNA. In general, the phenanthroline derivatives give more stable hybrids than the corresponding phenanthrene analogs. The difference in  $T_m$  is most likely a result of the higher dipole moment of the heteroaromatic phenanthroline, compared to the phenanthrene, resulting in stronger interstrand stacking interactions. Finally, the stability of the hybrids is considerably decreased if the linkers of the building blocks are too short.

## **References and notes**

- 1. Seeman, N. C. Acc. Chem. Res. 1997, 30, 357-363.
- 2. Seeman, N. C. Nature 2003, 421, 427-431.
- 3. Wengel, J. Org. Biomol. Chem. 2004, 2, 277-280.
- 4. Bashir, R. Superlattices Microstruct. 2001, 29, 1-16.

- 5. Uhlmann, E.; Peymann, A. Chem. Rev. 1990, 90, 543-584.
- 6. Herdewijn, P. Biochim. Biophys. Acta, Gene Struct. Exp. **1999**, 1489, 167–179.
- 7. Eschenmoser, A. Science 1999, 284, 2118-2124.
- 8. Leumann, C. J. Bioorg. Med. Chem. 2002, 10, 841-854.
- Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996, 382, 607–609.
- Alivisatos, A. P.; Johnsson, K. P.; Peng, X. G.; Wilson, T. E.; Loweth, C. J.; Bruchez, M. P.; Schultz, P. G. *Nature* 1996, *382*, 609–611.
- 11. Shi, J. F.; Bergstrom, D. E. Angew. Chem., Int. Ed. 1997, 36, 111-113.
- 12. Shih, W. M.; Quispe, J. D.; Joyce, G. F. *Nature* **2004**, *427*, 618–621.
- Li, Y. G.; Tseng, Y. D.; Kwon, S. Y.; D'Espaux, L.; Bunch, J. S.; Mceuen, P. L.; Luo, D. Nat. Mat. 2004, 3, 38–42.
- 14. Winfree, E.; Liu, F.; Wenzler, L. A.; Seeman, N. C. *Nature* **1998**, *394*, 539–544.
- Meggers, E.; Holland, P. L.; Tolman, W. B.; Romesberg, F. E.; Schultz, P. G. J. Am. Chem. Soc. 2000, 122, 10714– 10715.
- Tanaka, K.; Tengeiji, A.; Kato, T.; Toyama, N.; Shionoya, M. Science 2003, 299, 1212–1213.
- 17. Weizman, H.; Tor, Y. J. Am. Chem. Soc. 2001, 123, 3375-3376.
- Zimmermann, N.; Meggers, E.; Schultz, P. G. J. Am. Chem. Soc. 2002, 124, 13684–13685.
- Zimmermann, N.; Meggers, E.; Schultz, P. G. Bioorg. Chem. 2004, 32, 13–25.
- 20. Adleman, L. M. Science 1994, 266, 1021-1024.

- Sakamoto, K.; Gouzu, H.; Komiya, K.; Kiga, D.; Yokoyama, S.; Yokomori, T.; Hagiya, M. *Science* 2000, 288, 1223–1226.
- Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L. Nature 2000, 406, 605–608.
- 23. Dittmer, W. U.; Simmel, F. C. Nano Lett. 2004, 4, 689-691.
- 24. Langenegger, S. M.; Häner, R. Helv. Chim. Acta 2002, 85, 3414–3421.
- 25. Langenegger, S. M.; Häner, R. Chem. Biodiv. 2004, 1, 259–264.
- Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J. J. Chem. Soc., Perkin Trans. 2 2001, 651–669.
- 27. Stutz, A.; Langenegger, S. M.; Häner, R. *Helv. Chim. Acta* **2003**, *86*, 3156–3163.
- Chandler, C. J.; Deady, L. W.; Reiss, J. A. J. Heterocycl. Chem. 1981, 18, 599–601.
- 29. Representative analytical data are given for compound **3b**: light-yellow foam. TLC (AcOEt-hexane 7:3 +2% Et<sub>3</sub>N):  $R_f$  0.28. <sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>): 1.10, 1.12 (2d, J = 6.7, 2*Me*CHN); 2.00 (m, 2CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>); 2.50 (t, J = 6.4, CH<sub>2</sub>CN); 3.2–3.8 (m, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>N, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>N', OCH<sub>2</sub>CH<sub>2</sub>CN, 2Me<sub>2</sub>CHN); 3.67 (s, 2MeO); 6.73 (d, 4 arom. H); 7.1–7.5 (m, 9 arom. H); 7.93 (s, 2 arom H); 8.44 (m, 2 arom. H); 8.59 (*m*, 2 arom. H, 2NH). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): 147.78. HR-ESI-MS (pos. mode): 907.3943 ([M+Na]<sup>+</sup>; calcd 907.3924).
- Beaucage, S. L.; Caruthers, M. H. Tetrahedron Lett. 1981, 22, 1859–1862.
- Sinha, N. D.; Biernat, J.; McManus, J.; Koster, H. Nucleic Acids Res. 1984, 12, 4539–4557.